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ABSTRACT

A discussion is made of nonparametric versus parametric methods for the estimation o(
~ probability densities. A new algorithm for nonparametric density estimation Is given and

Its performance compared with state-of-the-art kernel estimation algorithms.

Key words: computational feasibility, maximum likelihood, Pearson family, Ae nel est1obts,

penalized maximum likelihood.

1. INTRODUCTION

Two major causes for poor (especially nonrobust) optimization theoretic techniques I*
statistics are

(1) an inappropriate choice of a parameter (function) space
and

(2) an inappropriate choice of a criterion function (functiona1).
"Appropriateness" is determined by a balance between computational feasibility and ap-

proximation to truth. It is to' be expected that the advent of the high speed digital computer
should drastically raise our pain threshold of computational feasibility. Consequently it is
somewhat surprising that most standard statistical procedures have remained unchanged sice
the 1930's. Many of these involve the estimation of probability densities.

2. DISCUSSIM

In 1922 Fisher [1) presented the concept of parametric maximum likelihood estimati .
We recall that his development requires the functional form of the unknown density f(xjS)
be known. Given a random sample (Xlx 9 ... IxU) from f, we seek that value (Zs) con-
tamced in appropriate parameter spac -CR which maximizes

log vxdeI) -Z gf(xjle) . (I

Then under very general conditions, s
ina o,.8 (2)

and

" / ° ,,,_b.log fcx19

The latter result Is particularly appealing, since it states that the parametric caximum

likelihood estimator asymptotically achieves the Cauchy-Schwarz (Cramer-Rao) lcroer bound

for Ef(-O), where iE9, the class of unbiased estimates for 0
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The optimality properties of parametric maximum likelihood algorithms are likely to be
of little utility if (as is generally the case) we do not have a good idea as to the
functional form of the unknown density. For example, if we assume the density is normal, the
maximum likelihood estimator for the median 0 is S . If, in fact, the underlying dis-
tribution is Cauchy, X is no better an estimator for 0 than any single one of the
observations. In general, if we assume an incorrect funcTronal form of the density and use
any of the classical parametric techniques for estimating the density, we will find that

lim f(x) - fx) 2 dx>O . (4)
n-w - ( est n true)

The pathology of parametric maximum likelihood estimation under real world conditions
should not be unexpected. An optimization-theoretic technique designed to have good per-
formance under very restrictive conditions (e.g., that the functional form of the density
is known) is unlikely to perform vell when we step outside the domain of these condItions.
We need to devise algorithms which are "optimal" in a more general and realistic setting.
This point was implicitly raised a quarter century before maximum likelihood by KarlPearson (71. (For a discussion of the Fisher-Pearson battle on maximum likelihood, the

reader is referred to 1131.) He considered a fairly large class of probability densities
characterized by the differential equation

d log f(x) - x-a
dx b0 + b x + b2x

2

The estimation of the four parameters is readily carried out via the first four sample
moments. Unfortunately, although the Pearson Family contains many of the classical
distributions, it has serious deficiencies. For example, it contains no multimodal densities.

In order to obtain a practical extension of Pearson's concept to density estimation in

4 the general setting where we know only that the underlying density is "smooth", we must de-
velop an estimator where the number of characterizing parameters increases with the sample
size. The simple histogram (dating back to John Graunt in 1662 131) has such a property
but suffers from discontinuities. These may be eliminated quite readily by connecting mid-

points with straight lines. The extreme "locality" of the histogram 's less easily~~amelIiora ted.

Computationally more complicated but possessing better consistency properties than. the
histogram is the kernel density estimator (or "shifted histogram" [121, (61, [8)). Here, on
the basis of a random sample (xi,x 2*... xd) we have the estimator

u

where K is any probability density havinga
I' [KO)jdy < ,o(7) .,

sup IK(y)l <- (8)
..a< y <m

limjyK(y)I - 0 . (9)

To minimize the asymptotic integrated mean square error, we have the optimal ..
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h 9 "11/5 .,- 1/5 IO
h f (f,,x))2dx] u , (10)

which gives as asymptotic integrated mean square error

-4/5-1/55 1/5n-4/5 (1
IHsE - -24505 5 [(fu(x)) dx n

Unfortunately, the design parameter h requires approximate knowledge of (f"(X)) dx
An Iterative algorithm for the estimation of h is given in [123. Monte arlo results
indicate that a twofold overestimation or underestimation of h typically causes a two-
fold increase of the IHSE over that shown in (Ui). A survey of other nonparametric
density estimation techniques is given In [131.

A new approach motivated by a suggestion of Good (2) has been considered in [4. 153.
f111, 113). Here we seek that density fEfR(ab) which maximizes the criterio, functional

L(f) - log f(xj) f ((k)) 2 dX (12)

J-1 k-O

i.e.,

f(k)E L2(a,b); k - 0,1,...,a

f(k)(a) - f(k)(b) - 0; k - 0,1,2,...,9-1

a)f (b 0
f>O

fbf(x)dx - 1

a

The solution to (12) is referred to as the maximum penalized likelihood estimator. From [5
we have

Theorem. Te MPLE estimator exists and is unique. U

Recently, a discretized approximation to the solution of (12) has been algorithmitized
and investigated by Scott 1101, (111. This work suggests

Theore. If ) is the solution to the NPLE criterion and fTENCC..b) then

JhE~ x fT()) 2Jdx--(13)
a

where fT(.) is the density f truncated to (a,b). i

From a practical standpoint, the performance of In(.) is relatively insensitive to the
selection of the design parameters , . If Ve set all the ai - 0 except for cy, it is
not unusual for a change of 2 by a factor of 100 from the Jptimal to increase he ISE by
less than a factor of 2 .

In Table 1, we compare the IMSE of the MPLE with that of popular Gaussian kernel estimator
for various densities and sample sizes. Of special note is the fact that although we have
used the optimal (and unobtainable) design parameter for the kernel estimator, we have used
the suboptimal value of 0t2 10 throughout for the 11PLE estimator.
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TABLE I

IMSE Values of the NPLE (a2 - 10) and Gaussian Kernel Density Estimation
(with optimal h) for Various Distributions and Sample Sizes.

Density a HPLE Kernel
INSE IMSE

N(0,I) 25 .0027 .0041

100 .00079 .00129

400 .00033 .00053

jN(-1.5,1) 25 00159 .00128

4N( 1.5, 1) 100 .00054 .00052

ts 25 .00282 .00475

100 .00084 .00157

3. CONCLUSIONS

The supposed optimality of classical parametric density estimation procedures Is
frequently invalid because the true functional form of the density is unknown. Never-
theless, we can attack the more general and practical problem of estimating a density
of unknown functional form. The maximum penalized likelihood density estimator has been

algo'ifthmitized and is now a part of standard statistical software [11). -
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